Enhanced magnetocaloric performance in manganite bilayers
نویسندگان
چکیده
منابع مشابه
Magnetocaloric effect in La0.75Sr0.25MnO3 manganite
The polycrystalline manganite La0.75Sr0.25MnO3 prepared by an alternative carbonate precipitation route reveals the rhombohedral perovskite structure. Magnetization isotherms measured up to 2 T are used to determine Curie temperature of 332 K by means of Arrott plot. Maximum of magnetic entropy change is found at Curie temperature. The relative cooling power equal to 64 J/kg for 1.5 T magnetic ...
متن کاملReview of the magnetocaloric effect in manganite materials
A thorough understanding of the magnetocaloric properties of existing magnetic refrigerant materials has been an important issue in magnetic refrigeration technology. This paper reviews a new class of magnetocaloric material, that is, the ferromagnetic perovskite manganites (R1 xMxMnO3, where R 1⁄4 La, Nd, Pr and M 1⁄4 Ca, Sr, Ba, etc.). The nature of these materials with respect to their magne...
متن کاملDynamic consequences of exchange enhanced anisotropy in ferromagnet/antiferromagnet bilayers
– The phenomenon of exchange anisotropy is well known in terms of static magnetization properties such as enhanced coercivity and magnetization loop shifts. These effects are primarily associated with effective anisotropies introduced into a ferromagnet by exchange coupling with a strongly anisotropic antiferromagnet. These effective anisotropies can be understood as manifestations of a more fu...
متن کاملSpin-flip Enhanced Thermoelectricity in Superconductor-Ferromagnet Bilayers
We study the effects of Zeeman-splitting and spin-flip scattering in a superconductor (S) on the thermoelectric properties of a tunneling contact to a metallic ferromagnet (F) using the Green’s function method. A giant thermopower has been theoretically predicted and experimentally observed in such structures. This huge thermoelectric effect is attributed to the spin-dependent particle-hole asy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Physics
سال: 2020
ISSN: 0021-8979,1089-7550
DOI: 10.1063/1.5139946